
NASA Contractor Report

ICASE Report No. 93-63

191530

V-I- z_/

-/.J

// _

/C S 2O
Years of

Excellence

A PARALLEL ADAPTIVE MESH REFINEMENT ALGORITHM

James J. Quirk

Ulf R. Hanebutte

(_iASA-CP-191530) A PAR, ALLZL

ADAPTIVE MESH REFINEMENT ALGORITHM

([CASE) 31 p

N94-15724

Unclas

0190904

NASA Contract No. NAS 1-19480

August 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Harnpton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

A Parallel Adaptive Mesh Refinement Algorithm

James J. Quirk 1

and

Ulf R. Hanebutte I

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681, USA.

Abstract

Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the

local resolution of the computational grid to the numerical solution being sought have emerged as

powerful tools for solving problems that contain disparate length and time scales. In particular,

several workers have demonstrated the effectiveness of employing an adaptive, block-structured

hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from

the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes

cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested.

However, because of their block-structured nature such schemes are inherently parallel, so all is not

lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized.

This method is built upon just a few simple message passing routines and so it may be implemented

across a broad class of MIMD machines. Moreover, the method of parallelization is such that the

original serial code is left virtually intact, and so we are left with just a single product to support.

The importance of this fact should not be underestimated given the size and complexity of the

original algorithm.

While the parallel version currently lacks some of the advanced features of the serial version,

it is sufficiently mature that it can be used routinely to perform very large scale simulations of

detonation phenomena using workstation clusters. Hence the parallel algorithm has progressed

beyond the level of being solely an exercise in computer science to become a powerful research tool

for investigating fluid phenomena. Finally, although it will be seen that we have produced a fair

amount of paraphernalia to parallelize just a single algorithm, it should be appreciated that the

AMR algorithm is itself sufficiently general to be applicable to a large class of problems. And so

the method described here could be legitimately construed as being a template for parallelizing

block-structured, adaptive grid algorithms.

1This research was supported by the National Aeronautics and Space Administration under NASA (:on-

tract No. NAS1-19480 while the authors were in residence at the Institute for (:omputer Applications in

Science and Engineering (|CASE), NASA Langley Research (:enter, Hampton, \"A 23681.

1 Introduction

Despite the enormous potential power offered by parallel computers, it is worth illustrating

that brute force calculations are unlikely to be of much use for solving problems that contain

disparate physical length scales. Consider the following example taken from the study of

detonation waves.

The usefulness of explosive materials stems from their ability to rapidly convert chemical

energy into heat energy. For example, a good solid explosive converts energy at a rate of the

order 101° watts per square centimetre of its detonation front. Thus, as noted by Fickett

and Davis[7], a 20 m square detonation wave operates at a power level equal to all the power

the earth receives from the sun! For a given explosive, the rate of energy release essentially

depends on the speed with which a detonation wave is propagated. Traditionally, detonation

speeds are determined from experiment. For solid explosives, a cylindrical charge known

as a rate-stick is ignited at one end, and the propagation speed is measured at the other

end. It is assumed that the length of the stick is sufficient to allow the detonation front

to reach its nominally steady speed. Note that the leading part of a detonation front is a

strong shock wave. As this wave propagates, so the explosive material is compressed and

thus heats up. This raise in temperature triggers a chemical reaction which releases large

amounts of energy in the form of heat. This energy release provides motive force for the

shock, and a balance is reached such that the chemical reaction supports a nominally steady

speed of shock propagation.

The simulation of a rate-stick experiment represents a formidable challenge. Since the

chemical reaction drives the shock wave, the simulation must be able to resolve the reaction

zone accurately. Results for model problems suggest that at least 10 mesh cells are needed

across the width of the reaction zone. Now for certain types of solid explosive the reaction

zone may be only 0.02 mm in thickness, in which case the mesh spacing within the reaction

zone must be no larger than 0.002 ram. Given that a rate-stick might be 100 mm in length

and 100 mm in diameter, some 1.25 × 10 9 cells would be required for an axisymmetric flow

calculation on a unifornl mesh. From the point of view of numerical accuracy, it is unlikely

that the detonation front could be propagated by more than one mesh cell per time step.

Consequently it would take some 5 × l04 time steps for the detonation to travel the full

length of the rate-stick. Therefore the total workload for the simulation would be of the

order of 6.25 × 1013 cell updates. Such a calculation would be absurd. A 1 Gflop computer

might be capable of 10 6 mesh updates per second, in which case the calculation would take

723 days to run! Clearly, to make such a simulation viable, something other than a large

computer is required, hence the need for adaptive mesh refinement.

Adaptive mesh schemes attemt)t to match dynamically the local resolution of the com-

putational grid to the requirements of the evolving flow solution. Thus very fine mesh cells

are restricted to those regions where they are needed, and elsewhere tile computational

grid may be quite coarse. Such a strategy can dramatically reduce the computational effort

required to perform simulations of problems that contain disparate scales. Returning to our

detonation simulation, if the fine mesh cells were restricted to the vicinity of the reaction

zone, only about 2.5 x l0 s cells would be required for the simulation. In which case the

simulation would only require of the order of 1.25 × l01° cell updates. Therefore, whereas

the uniform mesh simulation might take 723 days to run, the adaptive mesh simulation

would take just 208 minutes!

Because the potential savings are so large, the adoption of ahnost any form of mesh

adaption, no matter how nai've, will pay some dividend. Consequently, a wide variety of

strategies have been utilized[ill. For the simulation of complex shock wave phenomena,

however, the AMR algorithm first developed by Berger[1, 2], and later by Quirk[13], and by

Fischer[8], has proved to be particularly effective. Despite its effectiveness, it is clear that

the long term usefulness of the AMR algorithm will depend on the extent to which it can

exploit parallel computing engines. The aim of this paper is to show that although the AMR

algorithm is quite involved, and as such it may be thought to be an unsuitable candidate

for parallelization, in actuality the algorithm has sufficient inherent parallelism so as to be

a good candidate for running on MIMD machines. Before proceeding further it should be

acknowledged that Berger and Saltzman[3] have already had some success using the AMR

algorithm on a SIMD machine. But since this architecture necessitates an approach very

different from the one described here their work will not be considered further.

The rest of this paper is as organized follows. In Section 2 we present some background

information for the AMR algorithm together with some of the implementation details for

the original serial algorithm so that the reader might better understand the method of

parallelization which is described in Section 3. In Section 4 we present two set of results

which demonstrate the worth of the new parallel version of AMR. The first set of results will

be of more interest to the computer scientist, for it deals with issues such as how well does

the algorithm scale. The second set of results will be of more interest to the applications

scientist, since it shows how the parallel algorithm might be used in earnest; results are

presented from a study of the Mach reflection of a detonation wave by a ramp. Lastly, in

Section 5 we present some conclusions that we have drawn from this work.

2 The AMR Algorithm- A Primer

The AMR algorithm is a general purpose mesh refinement scheme that has primarily been

used for studying shock wave phenomena[2, 6, 14]. The purpose of this section is to provide

a primer for those readers who are unfamiliar with the algorithm in order that they might

appreciate the issues that shaped our method of parallelization. It will soon become obvious

that the AMR algorithm is quite involved, and so here we can do little more than describe

what constitutes the algorithm. No real attempt is made to describe why the algorithm

chooses to do things a certain way, nor how it actually performs certain tasks. Those

interested in the full details are strongly recommended to read Quirk's thesis[13]. The

exposition given here is broken down into four parts. First, we describe the grid structure

used by the algorithm, for all other aspects of the scheme stem from this structure. Second,

we outline the process which integrates the discretized flow solution contained by the grid

structure. Third, we outline the process whereby the grid dynamically adapts to the evolving

flow solution, and finally, we close this primer by presenting some pseudo-code fragments

which show how the AMR algorithm is organized.

2.1 Grid Structure

The AMR algorithm employs a hierarchical structure of embedded meshes to discretize the

flow domain. The bottom of the hierarchy, level 0, consists of a set of coarse mesh patches

which delineate the flow domain. Each of these mesh patches forms a logically rectangular

unit of cells. These patches are restricted such that it is possible to reference all their cells

by a single (i,j) co-ordinate system, C_}, as shown in Figure 1. This restriction ensures

that there is continuity of grid lines between neighbouring patches and that if two patches

overlap one another then the regions of overlap are identical. These mesh patches for::: the

effective grid at level 0, Go, and we identify the k th patch by G0,k. Usually the terms mesh

and grid are synonymous, but throughout this work we reserve the term mesh for a single

logically rectangular patch and the term grid for a collection of such patches.

iiii
ii ii

ii'"........II

:i:il:i:l I I
::::$:::11 I

::::l::i I l
::::f::i I I

D Mesh Patch

Logical CoordinateSystem

Figure 1: All meshes are fixed relative to a logical co-ordinate system.

The flow domain may be refined locally by embedding finer mesh patches into the coarse

grid at level 0 to form the next grid level within the hierarchy, G1. These embedded patches

are formed by linearly sub-dividing rectangular groups of coarse cells. The choice for the

number of sub-divisions along the edges of a coarse cell is arbitrary, but it must be the

same for every coarse cell that is refined. This restriction enables every mesh cell contained

at level 1 to be referenced by its own (i,j) co-ordinate system, C_ . In their turn, these

embedded patches may contain even finer embedded patches which form the grid (;2. [his

process of refinement may be repeated as desired up to some level Imax. The grids at

different levels within the hierarchy co-exist, for underlying an embedded fine grid there is

a complete coarse grid and a complete coarse field solution, see Figure 2. Note that the

discretized flow solution is taken to be a cell-centred projection of the true solution.

l[0"

Grid and density contours for all 3 grid levels

(;rid and density contours for just the lower 2 grid levels

Figure 2: (:oarse grids exist beneath fine grids.

In order to specify an arbitrary grid structure, (;, il is necessary to supply the spatial

refinement factors rli and r.ll for each grid hwel, l, together with the extent of each mesh

patch, (;t,_, using C_ co-ordinates. The extent of a patch is just given by the co-ordinates

of its lower-left and upper-right corners. All other details for the grid structure can be

gleaned from this basic data. For example, since a simple relationship exists between the

co-ordinate systems C_ and C__1,

(it- 1) (Jl- 1)
il-i - + 1 and jl-I - + l,

rlt rJl

it is possible to determine which patches at level l - 1 underpin a given patch at level I.

4

For convenience we chose to store the following variables for the original serial imple-

mentation of the grid structure.

LMAX im_x, maximum grid level.

For each grid GI:

NGA(L) nGl, number of grids contained by Gz.

GP(L) Gpt, grid index pointer.

rI(L) r/l, Spatial refinement factor in I direction.

rJ(L) rJl, Spatial refinement factor in J direction.

For each mesh patch Gl,k:

GRD = GP(L)+K

LGRID(GRD) Grid level for the mesh Gl,k.

IMX(GRD) IMt,k, Width of mesh Gl,k.

JMX(GRD) JMl,k, Height of mesh Gl,k.

JNf(GRD) Dt,k , extent of mesh Gl,k using C_ co-ordinates.

JSf(GRD)

IEf(GRD)

IWY(GRD)

JNc(GRD) (2c extent of mesh Gl,k using C_+ 1 co-ordinates.l,k'

JSc(GRD)

IEc(GRD)

IWc(GRD)

Note that the storage overheads are quite small, just 11 variables are used for each patch.

Also note that we have assigned a unique index to each mesh patch; the grid index pointer

Gpl satisfies the recurrence relation, GpI+1 = Gpt + nGl, with Gpo set to zero. Considering

that an average patch might contain upwards of 1000 cells, the overhead per cell is negligible.

A pair of nested DO loops is all that is required to run through the grid structure and operate

on every mesh.

DO L=0,LMAX

DO K=I,NGA(L)

GRD = GP(L)+K
, ° °

Operate on mesh Gl,k

END DO

END DO

The discretized flow solution is stored in a series of large lists or heaps; a separate heap is

used for each variable. Each heap contains a contiguous set of blocks, one block for each

mesh,andeachblockconsistsof a contiguoussetof storageelementswith oneelemel,t for
eachcellof themesh.It is convenientto viewa meshpatchasbeingsurroundedbyaborder
of dutfimycells,twocellsdeep.Thus(IM + 4)× (JM + 4) storageelementsarerequiredfor
eachmeshpatch.The headof eachblockis foundby indirectionthroughthelist, H2PTR,
thusthe informationfor the ij th cell of the grid, GRD, would be located at,

H2PTR(GRD) + (I + 2) + (J + l)* (IMX(GRD) + 4).

Note that the cells within a mesh patch are stored by rows. The following code fragment

would access every mesh cell in the data structure; the subroutine UNPACK_GRID com-

putes the location pointer, lJ, for the cell (1, l) and returns the stride lengths Ibmp and

Jbmp for the specified mesh.

DO L=0,LMAX

DO K=I,NGA(L)

GRD = GP(L)+K

CALL UNPACK_G RID(G RD,1,1,IJ,Ibmp,Jbmp)

DO I=I,IMX(GRD)

IJo = IJ

DO J=I,JMX(GRD)

IJ contains a pointer to the data stored

for the ij th cell of Gt,k.

IJ = IJ +Jbmp

END DO

IJ = IJo+Ibmp

END DO

END DO

END DO

Connectivity information which is needed along mesh boundaries, such as which mesh

patches abut a given patch, is also stored using linked lists, but owing to a lack of space no

details can be given here.

2.2 Flow Integration

In principle any cell-centred, flux-based scheme developed for a single topologically regular

mesh can form the basis for the flow integration process. The dummy cells which surround

each mesh patch are the key to this flexibility. They effectively turn cell interfaces along

mesh boundaries into internal interfaces. Prior to integrating a grid, the dummy cells

for every mesh patch contained by the grid are primed with data. Each mesh patch is

thenprocessedindependentlyof everyother meshpatchby someusersupplied,black-box

integrator that neveractually seesa boundary. This is possiblebecausethe data used
to prime the dummycellsis chosensuchthat the resultantnumericalfluxesalongmesh
boundariesareconsistentwith thevariousboundaryconditionsthat haveto bemet.

Considerthe fine-coarse boundary shown in Figure 3. The AMR algorithm refines in

time as well as space. So for a refinement ratio of 4 say, a fine mesh patch will be integrated 4

times with ¼ the size of the time step of its underlying coarse patch. The order of integration

is Mways from coarse to fine, thus the coarse patch flow solution may be interpolated in

space and time to provide Dirichlet boundary conditions for the fine patch. For multi-level

calculations, the integrations of the various separate grid levels are recursively interleaved

so as to minimize the time span over which interpolation is required.

I I

_ne

liF
Coarse Mesh

q/ ,?,,),,?,,?,,_
Dummy Cells Fine Mesh

Figure 3: A fine-coarse internal boundary.

Only two other types of mesh boundary exist: fine-fine boundaries, where the dummy

cells of one mesh patch exactly overlap the mesh cells of another patch at the same grid

level, in which case the appropriate data for the dummy cells is simply shovelled directly

from the relevant mesh cells; external boundaries, where the data for the dummy cells can

be inferred locally, for example, at a solid wall a simple reflection procedure is applied in

the usual manner.

The only other operators that form part of the AMR flow integration process are a

restriction operator which projects the flow solution contained by a fine mesh patch on to

its underlying coarse mesh patch; this is required for consistency purposes. And a fixup

operatorwhichis appliedalonga fine-coarse boundary whenever a conservative integt._lon

process is required. Essentially the fixup operator modifies the updated coarse cell solutions

along a fine-coarse boundary using the cumulative fluxes across the boundary as seen by

the fine patch during its sub-cycle of smaller integration time steps.

2.3 Elements of the Adaption Process

Consider a planar shock wave travelling down a duct, from left to right.' Suppose a coarse

grid, Go, is used to discretize the duct and further suppose that an embedded grid, G1,

which is finer than Go covers the vicinity of the shock, see Figure 4 (a). Now, if the flow

solution on this grid structure is integrated forward ill time, sooner or later the shock will

move to within one mesh cell of the right-hand edge of the grid G1, see Figure 4 (b). The

shock is about to run off the edge of the embedded mesh. At the very least this act will

cause the shock to smear to its natural width on the coarse grid thus lowering the resolution

of the simulation. But if the shock is strong, it will also introduce spurious oscillations into

the flow solution. The AMR algorithm avoids such problems by dynamically adapting the

grid structure to the evolving flow. Here, the adaption process results in the embedded

grid, G_, gliding along the coarse grid, Go, so as to keep pace with the moving shock front.

The adaption process may be split loosely into three tasks. First, given a grid structure

and flow solution, regions of interest are identified. These regions will be refined, that is

they will be covered by an embedded grid. For our duct example the adaption process looks

at the solution on the grid Go. Using some ad hoc monitor function such as the local density

gradient, the cells in the vicinity of the shock front are flagged for refinement as shown in

Figure 4 (c). Second, the flagged cells are grouped into clusters using a recursive, area

subdivide algorithm. Each of the clusters so produced is then covered by a single embedded

mesh patch. This grouping process results in a new grid structure, G', see Figure 4 (d).

Temporarily, as shown in Figure 4 (e), there are now two grid structures, but the new

grid structure does not have a flow solution. Finally, the solution from the old structure is

transferred to the new one, see Figure 4 (f). If this sequence of tasks is performed repeatedly,

the embedded grid will shadow the moving shock front.

For multi-level calculations, a grid is adapted whenever it has completed its sub-cycle

of integrations relative to the coarse grid which underpins it. Thus the order of adaption

dovetails with the recursive order of integrating the different grid levels. Whenever it is

necessary to adapt more than one grid level at once, the adaption process always proceeds

from fine to coarse. Following the adaption of a fine grid, the adaption process for the coars_ •

grid at the next level down must ensure that any new coarse grid that may be produced

fully supports the finer grid. This job of ensuring "proper nesting" can only be done if the

order of adaption is from fine to coarse.

8

(a)

(c)

(e)

ILOll
i lo,l

Ill

I

m

Go

Go

Go

(b)

(d)

(f)

c_

Go

Go

Figure 4: The adaption process for a shock moving down a duct.

2.4 Pseudo-Code Fragments

The following fragments of pseudo-code give an overview of the complete AMR algorithm.

We have chosen to present these fragments since they provide a succinct means of describing

the closely coupled nature of the AMR algorithm. It is not our intention that they be

cribbed verbatim in order to build a working code. Indeed, this would not be possible since

for reasons of clarity much clutter has been omitted.

First a simple harness is required to drive the algorithm.

repeat {

Find _S tab le _Time _St ep

AMR(0,1)

} until The_Calculation_Is_Finished

This harness simply iterates until the computation is finished. For each iteration a set of

stable time steps is computed just prior to calling the Mgorithm proper; a separate time

step Atl is required for each grid Gl. The procedure AMR orchestrates the recursive

interleaving of the integrations and adaptions of the various grid levels.

Procedure AMR(I,Nt)

Integrate_Grid(l,Nt)

ifl<lm_x{

Init ialise_Conservative_Fixup(l)

for Nft = 1 to rtl {

AMR(I + 1,gft)

}
Apply_Conservative_Fixup(l + 1)

Project_Solution(l + 1)

Set_bc(l,N t)

if Nt < rtl Adapt(l)

}
End Procedure

The parameters l and Nt specify the grid level to be operated on and the integration, sub-

cycling index, respectively. The procedure Integrate_grld advances the flow solution held

on the grid Gt forward by time Art. This is done by first priming the dummy cells for

each mesh patch contained in the grid via a call to the procedure Set_BC. Note that the

sub-cycling index Nt is required so as to be able to perform the correct interpolation in

time at a fine-coarse boundary. Once all the dummy cells have been primed, a call to the

user-supplied routine Integrate_Mesh is invoked for all nGl patches contained by the grid

Gt. The remaining two routines form part of the conservative fixup procedure, the details

of which need not concern us here.

Procedure Integrate_Grid(l,N t)

Set_BC(l,N t)

for k = 1 tonGt {

Integrate_Mesh(Gpt + k)

Save_Coarse_Fluxes(Gpt + k)

Integrate_Fine_Fluxes(Gpl + k)

}
End Procedure

Following the integration of the grid Gt it may be necessary to recursively call the procedure

AMR so as to integrate the next finer grid, GI+1, for its rtt+l sub-cycles. If not, a call to

the routine Apply_Conservative_Fixup uses the cumulative flux totals to correct those

coarse cells in Gt-1 which abut the grid Gt. Following which, for consistency, the solution

held on Gl is projected on to the coarse grid Gl-l. Once the subcycling is complete for a

particular grid level, it must be adapted; this is done via a call to the procedure Adapt,

the innards of which should be clear from having read Section 2.3.

l0

ProcedureAdapt(/l)
Inltialise_G

for I = Im_- 1 down to 11 {

Set_Refine_Flags(1)

E ns ure_P roper _Nest ing(l)

Cluster(l)

}
Transfer_Solution

Transfer_Data_S t ruct ure

Build_Connectivity(ll)

End Procedure

3 Method of Parallelization

It should now be clear that the AMR algorithm cannot be distilled down to a small kernel

upon which one can simply try out various parallelizing strategies. And so it might appear

that the algorithm is an unsuitable candidate for parallelization. Fortunately, however,

the algorithm exhibits a natural coarse grain parallelism in that individual mesh patches

may be processed largely in isolation from one another. We have concentrated our efforts

on exploiting this coarse grain parallelism using a message passing paradigm. Given this

strategy, one might assume that the resultant parallel implementation would not scale well

for large numbers of processors, but before reaching such a conclusion the following two

points should be considered carefully.

Firstly, by far the bulk of the computational effort for the AMR algorithm is spent not

on complex tasks such as the adaption process but on the simple task, logically speaking,

of integrating an isolated mesh patch. For the explicit integration methods that are cur-

rently in vogue for simulating shock wave phenomena, this computationally intensive task

exhibits much fine grain parallelism that could reasonably be expected to utilize additional

processors. In view of this, the ideal parallel computing engine for the AMR algorithm

would probably be a hybrid MIMD/SIMD machine. The orchestration of the algorithm

would be performed using our message passing paradigm on MIMD processors, and the low

level "number crunching" would be performed locally on shared memory, SIMD processors

which executed code produced by a "smart" compiler. Interestingly, such hybrid machines

are already beginning to appear in the market place, an example being the CM-5 which is

produced by Thinking Machines Corporation[16].

Secondly, it should be appreciated that the AMR algorithm is designed for performing

very detailed numerical simulations; thus it is safe to assume that there are always a large

nunlber of mesh patches to be processed. For example, the not overly large problem shown

in Figure 8 contains 318 patches. A1] in all, we feel that for practical purposes our scheme

ll

will not run into scaling difficulties, especially since economic strictures will, _or_. Jlten

than not, severely limit the numbers of processors that are available.

All the basic components of the AMR algorithm stem from its choice of grid system. In

turn, most of the implementation details for the algorithm stem from the way in which the

grid system is coded. Therefore at the outset of designing the parallel implementation, we

decided that it was necessary to try and preserve, as far as was possible, the grid description

employed by the original serial version so as to be able to re-cycle large portions of the

existing code. It later transpired that given a layer of "parallel machinery" we could actually

re-use all the old serial code in a new SPMD (Single Program Multiple Data) parallel code.

We now describe this machinery in some detail. First we give some of the implementation

details for the parallel grid structure and its associated data storage mechanism, since these

fixed the ease with which the parallelization was accomplished. Next we give an abstract

description for the message passing paradigm which underpins our parallel implementation.

Finally, we describe how the new parallel, message passing AMR algorithm is organized.

3.1 Parallel Grid Structure

In essence, the serial code maintained a unique identifier for each mesh patch; thus the grid

structure could be described using a set of tables which were simply indexed using the mesh

identifiers. For the parallel implementation we have adopted the same approach. Firstly,

since we restrict ourselves to a coarse grain parallelism, we can postulate that a mesh patch

need only ever reside on a single processor. After all, as was already the case with the serial

implementation, a large patch can always be split up into two or more smaller patches.

Given the number of mesh patches on each processing node, it is possible to construct a set

of unique identifiers for the mesh patches in a grid structure distributed across one or more

processors. Thus it is possible to maintain a reversible mapping between some global mesh

identifier and the information pair consisting of: the identity of the node which owns the

patch referenced by the global identifier and the local index by which this node references

the patch;

global mesh identifier ¢=:::v (processor id, local mesh identifier).

Secondly, given the small amount of information that is required to define the grid structure,

it is not unreasonable to store a local copy of the above mapping, together with the global

grid tables, on each processing node. For our implementation this storage overhead amounts

to just 52 bytes per mesh patch; although small, this overhead could 1)e reduced to about 20

bytes, since for convenience we store certain derived variables. Now a large(I sized simulation

might consist of 1024 mesh patches with an average sized patch of 50 x 50 cells. If this

l)roblem were spread across 128 nodes, the local copy of the grid structure would amount to

less than 6% of the memory required to store the flow solution contained on a specific node

12

(a typical user-supplied flow solver might store between 8 and 10 double precision variables

for each mesh cell). Obviously having either a smaller average grid size or a larger number

of processors increases this storage overhead, but the strategy of keeping a local copy of the

global grid structure remains attractive. However, if at some future date the overhead ever

became prohibitively large, it would be possible to make use of the information contained

in the mesh extents so as to partition each of the global grid tables into some form of

distributed description table.

Since the grid data structure for the parallel implementation is effectively the same as

that for the old serial implementation, all of the original coding may be reused. For example,

the code fragment for accessing each cell of the grid structure, given on page 6, now has the

form:

DO L=0,LMAX

DO K=I,NGA(L)

GRD = GP(L)÷K

i f _node_owns_grid(GRD)

CALL UNPACK_GRID(GRD,I,I,IJ,Ibmp,Jbmp)

DO I=I,IMX(GRD)

IJo = IJ

DO J=I,JMX(GRD)

IJ contains a pointer to the data stored

for the ij th cell of Gt,k.

IJ = IJ +Jbmp

END DO

IJ = IJo+Ibmp

END DO

end_node_if

END DO

END DO

The directives if_node_owns_grid and end_node_if have simply been inserted into the orig-

inal code so as to ensure that an individual node only processes those mesh patches for

which it owns the flow solution. Note that the variables LMAX, NGA, GP, IMX and JMX

form part of the global grid tables and are therefore stored locally on each node. It should

also be noted that we only maintain one code for both the serial and the parallel versions of

the AMR algorithm. For the serial code, the above directives are simply mapped to blank

lines during a pre-processing phase of the compilation, while for the parallel code they are

substituted by a FORTRAN "IF ...THEN" construct which tests to see if the mesh patch

GRD is located on the node executing the code.

13

Another reasonasto why the abovecodefragmentmaybe soeasilyparal]cliz(,,tlies
buriedwithin the subroutineUNPACK_GRID.As wasdescribedin Section2.1, all flow
variablesare storedusinga numberof heaps,oneheapfor eachvariable,with the data
associatedwith the ij th cell of the grid, GRD, being stored at the location

H2PTR(GRD) + (I + 2) + (J + 1), (IMX(GRD) + 4).

In the parallel implementation this location is now given by

H2PTR(lindex(GRD)) + (I + 2) + (J + l) • (IMX(GRD) + 4),

where the macro lindex returns the local mesh index corresponding to the global mesh

index, GRD. Thus each node maintains its own heap data storage in exactly the same way

as the serial code, but it only stores data for those patches for which it is deemed responsible.

Lastly, as before, we can recover the old serial code from the new parallel implementation

by simply making the appropriate substitutions for the macro lindex at compile time.

3.2 A Message Passing Paradigm

Our parallel implementation for the basic AMR algorithm is based upon a message passing

paradigm. At various junctures during run time, the access of data is identified as being

either local or non-local. For any access which is non-local, that is the required data lies

off-processor, the appropriate inter node communication tasks are first scheduled and then

later executed as a series of sends and receives. In this section we describe how these

inter node cotnmunications are orchestrated. Our message passing machinery relies only

on a limited functionality being available at the system level; the high level procedures

described here are supplemented by a small user supplied library (typically less than two

hundred lines of code) which is dependent on the target platform. Thus we have been able

to ensure the portability of the AMR algorithm. To date, we have ported the algorithm

to a dedicated parallel computer (a 32 node iPSC/860 machine) using its native message

passing routines [9], and to the following workstation cluster environments: PVM (Parallel

Virtual Machine) [4], and APPL (Application Portable Parallel Library) [12].

Given our assumption that a mesh patch resides on just one processor, there are only a

few key tasks within the AMR algorithm that might necessitate accessing non-local data.

The most visible of these tasks is the job of priming the dummy cells which surround each

mesh patch. In the original serial implementation, whenever the grid structure changed,

the inter mesh connectivity was recomputed so as to build a schedule of the individual data

accesses required for priming the dummy cells of the grid. Since we store a local copy of

the grid description on each node, this procedure remains the same as that for the serial

implementation. Basically, the connectivity information is found by comparing the mesh

14

extentsbetweenpatchesonconsecutivegrid levels.Whereappropriate,externalboundary
information takesprecedenceoverfine-fine information which in turn takes precedence

over fine-coarse information. Once this data access schedule has been produced it may be

parsed so as to find which of its entries involve non-local data. These entries are collected

and stored in a separate schedule. The following pseudo-code illustrates this procedure; it

builds the connectivity information for grid levels 11 to lm_x.

Procedure Build_Connectivity(/l)

for l = ll to l,,_x{

Reset_Bdy_Types(1)

Flag_Coarse_Bdy(l)

Flag_Fine_Bdy(l)

Set_External_Bdy(l)

Check_Nesting(l)

}
B uild_Off_Processor_B C_Schedule(/l)

End Procedure

The innards of the five procedures within the "for" loop are too involved to be described

here, but they are identical to those in the serial implementation except for the addition

of some if_node_owns_grid directives which ensure that a processor only works on those

patches which it owns; we remind the reader that full details of the AMR algorithm have

been given elsewhere[13].

The procedure Build_Off_Processor_BC_Schedule oversees the production of the

schedule of tasks which involve accessing non-local data. The resulting schedule simply

consists of a set of requests for information; each request identifies a processing node together

with a portion of a mesh owned by that processor which contains the desired data.

Procedure Build_Off_Processor_BC_Schedule(ll)

for l = ll to Im_ {

Reset_Requests(1)

fork = 1 tonGl {

i f _node_own_%grid(Gpt + k)

Build_Requests(Gpl + k)

end_node_if

}
}
for l = ll to Im_x {

Transmit_Requests(1)

}
End Procedure

15

A global synchronizationis performedin the procedureTransmit_Requests, following
which, eachseparaterequestis sent to the specificprocessingnodethat will eventually
supplytheoff-processordata. Whenall therequestshavebeentransmitted,eachprocessing
nodehastwolocallists. Foreachgrid level,l, the first list contains the details for nSt items

of data that the node must send out when the dummy cells for Gt are being primed, while

the second list contains the details for the nRl items of data that the node is expecting to

receive during the priming process. Given these send and receive schedules, the procedure

which oversees the priming of the dummy cells for the grid, Gt, has the form:

Procedure Set_BC(l, Nt)

fork= 1 tonGt{

i f _node_owns_grid(Gpt + k)

Set_On_Proeessor_BC(Nt, Gpt + k)

end_node_if

Set_Off_Processor_B C(I, Nt)

End Procedure

The calltoSet_On_Processor_BC performsallthe data movements thatinvolvejustlocal

accesses,thereforethisroutineisthe same as that forthe serialimplementation,while the

procedureSet_Olf_Processor_BC performs allthe movements thatinvolvenon-localdata.

Note thatthe integration,sub-cyclingindex,Nt, isrequiredso thatthe correctinterpolation

in time can be done at a fine-coarseboundary, see Section2.2.

Procedure Set_Off.Processor_BC(/, Nt)

Synchronlze__Nodes

for item = 1 to nSt {

Pack_MsgBuf(item, Nt)

Node = Get_Node(item)

Snd..BC_Msg(N ode)

)
for item = 1 to nRt {

Wait_For_BC_Msg

Rcv_BC_Msg

Unpack_MsgBuf(Nt)

}
End Procedure

The non-local data movenlents take place as follows. First, all the processing nodes are

synchronized, then each node works through its list of messages to send. Each separate

message is packed into a buffer and then sent to the appropriate node using some low-level,

system dependent routine. Once a node has sent out all its messages, it is ready to receive

16

anyincomingmessagesthat it lnight beexpecting.Theorderin whichthe messagesarrive
is unimportant. A nodeknowsthat it will be sentnRl messages, so it simply waits for

that number of messages to arrive. Having received a message, again via some low-level,

system dependent routine, it simply decodes an identifier from within the message so as

to determine where the incoming, off-processor data should be stored. Note that a similar

process of sends and receives may t)e used in the other tasks (principally the procedures

Project_Solution and Transfer_Solution) that might want to access non-local data.

3.3 The Parallel AMR Algorithm

Apart from a couple of additions made to the adaption process, the basic organization of

the parallel AMR Mgorithm remains the same as that for the serial implementation. We

now describe these additions, but first we simply present the new version of the procedure

Adapt, c.f. the version given on page 11.

Procedure Adapt(ll)

Initialize_(_

for I = I,,,_,: - 1 down to 11 {

Set_Refine_Flags(l)

Ensure_Proper_Nesting(l)

Cluster(1)

Exchange_New_Extents(l)

}
Distribute_Grids(ll)

Transfer_Solution

Transfer_Data_St ruct ure

B uild_Connectivity(ll)

End Procedure

As has been described previously, the clustering process produces a set of mesh extents

which describe the newly adapted grid (;l- However, for the parallel implementation, the call

Cluster(l) will only produce a subset of the mesh extents for (--;l,since a node only processes

those patches which it owns. Therefore following the call to Cluster, it is necessary to

perform a global exchange, amongst the processors, of the mesh extents found locally. This

is done with the call to Exchange_New_Extents. This global exchange allows each node

to assemble the global grid description table for the newly adapted grid, G't.

Once each processor has the global description for the grid, sufficient inforlnation is

available to determine how the new mesh patches should t)e distril)uted so as to achieve a

satisfactory load-balance amongst the different processing nodes; this is done via the call

Distribute_Grids. As yet, we do not have any universal, distril)ution strategy that will

work well in all cases. Instead, we have simply chosen one of several heuristic strategies

17

dependingupon the particular flow problemthat wearesolving. The questionof, how

should one distribute the mesh patches, remains an active area of research. However, our

algorithm is structured such that different distribution strategies may be swapped in and

out at will. Therefore, it matters little at this stage that we have no universal answer.

4 Numerical Results and Discussion

We now present two sets of results which demonstrate the efficacy of our parallel imple-

mentation of the AMR algorithm. The first set of results concentrates on computer science

issues, such as how well does the algorithm scale, and the second set shows how the algo-

rithm can be used as a tool to provide insight into basic fluid phenomena.

4.1 Performance Issues

In order to determine the performance of a parallel algorithm, it is common practice to

carry out at least one of the following two studies. For varying numbers of processors, one

monitors the time taken to solve, either a fixed-sized problem, or a problem that is scaled

in such a way that the workload per processor remains constant. For reasons which will

follow, neither study is entirely satisfactory for determining the performance of our parallel

AMR algorithm. Nevertheless, we have carried out both studies, the results of which we

present below. But first, we make the following observations.

Assuming a perfect load-balance amongst processors, effectively, it is only the time spent

on inter node communications that impacts on the performance of our algorithm. On the

scale of things, the overhead for looping over every mesh patch in the grid structure as is

done by the code fragment on page 13, rather than looping over just those patches that

a node owns, is negligible. Consequently, for a given number of processors, the efficiency

of the algorithm will be strongly related to the ratio of the amount of computation to the

amount of communication. Therein lies the first difficulty for assessing the performance of

our algorithm. The AMR algorithm is a general purpose scheme which is not tied to any

one flow solver. Thus for a fixed grid structure, that is a fixed amount of communication,

the amount of computation can vary tremendously depending upon the application. Even

for a fixed application, one might have a choice of several different numerical schemes to

perform the "number crunching". For example, for the application shown in the next

section, depending on the circumstances, we have in the past used schemes that are 4-5

times more expensive than the one used for this paper. Despite such uncertainties, of one

thing we can be sure, using an expensive scheme will flatter any performance figures that

are measured. For that reason, all the performance figures given in this section are for the

flow solver used in the next section. Since this solver is one of the least expensive we use,

the performance figures given below may be considered as conservative estimates.

18

Returningto our two performancestudies,it is wellknownthat a study in whichthe
flow problemis scaled,soas to keepthe computationalload per processorconstant,can
hide poor performancecausedby either a largeserialcomponent in the algorithm under

test, or a large system overhead[10]. Of the two studies, however, this one more accurately

reflects the way in which our algorithm is used in practice. Again, it is worth emphasizing

that the AMR algorithm is designed for performing very detailed simulations. Indeed, to

this end, the serial implenmntation has been quite successful for investigating inert shock

wave phenomena; a typical simulation might take a day to run on a high-end workstation

and require around 96 Mbytes of storage. Therein lies a second difficulty in assessing the

performance of our algorithm. The only dedicated parallel machine that is available to

us has a paltry 8 Mbytes of memory per node, of which maybe only half is available for

storage once the operating system and load module have had their share. Consequently

it is impossible to run a fixed-sized test problem of any consequence on such a machine.

After all, a probMn that would fit into 4 Mbytes might take only 30 minutes to run on a

workstation. What is the merit in solving this in under 30 seconds on a massively parallel

machine, if the results are going to take a day to analyze!

When investigating fluid phenomena our modus operandi, in common with many of our

colleagues, is to scale the problem size such that, given the available computing resources,

the results are delivered within some acceptable time limit. Since we utilize colleagues'

machines during off-hours for our workstation clusters, typically our problems are scaled to

match one of two time slots, either the 12 hours available during a week night, or the 40

odd hours available over a weekend; the simulation shown in Figure 8 was performed in one

such weekend time slot.

Despite our misgivings, we have performed the following fixed-sized performance study.

Thirty two horizontal stripes, which are stacked one above the other, are used to discretize

a duct along which a detonation wave is propagated. Each stripe consists of 50 by 4 coarse

cells and contains one level of adaption, with a refinement ratio of 4, so as to improve

the resolution of the detonation wave. Tests were run on a 32 node iPSC/860 hypereube

machine, and two workstation clusters: one of 16 SUN ELCs, and one of 8 SUN SPARC10S;

both clusters used an ethernet ring. For the workstation tests we utilized the APPL[12]

message passing library. If there were fewer nodes than stripes, the stripes were distributed

in blocks. For example, four neighbouring stripes would be distributed on each node of an

8 node cluster.

For each of the parallel environments tested, Figure 5 shows a plot of the measured

efficiency against the numbers of nodes used to run the fixed-sized problem. Here the

efficiency is given by the ratio of the wall clock time taken to execute the problem on a

single node, to the wall clock time taken to execute the problem on n processors scaled

n times. Note that for the workstation clusters there is a sharp drop in efficiency across

19

the test range,while for the hypercube the efficiency only drops below 94% for 32 nodes.

Since the identical, load-balanced problem was executed in each case, in all probability, the

low communications bandwidth of the ethernet ring became saturated whereas the scalable,

high bandwidth network used by the hypercube did not. To test this hypothesis, a simple

test program was run which attempted to pass a large number of varying sized messages

around a ring of workstations, as quickly as was possible. This test represents a crude

approximation to the communication process during the priming of the dummy cells. The

results from this test are shown in Figure 6, they indicate that the bandwidth of our ethernet

ring is just 1 Mbyte/sec. The two vertical lines show the range of typical message sizes used

during the priming process, from which it can be seen that the ethernet ring would indeed

become saturated. Note that it takes just two machines to saturate the network! Now we

have observed a ten-fold increase in bandwidth when switching from ethernet to fibre optic

FDDI. This increase in bandwidth would significantly delay the point at which network

saturation takes place. Unfortunately, our workstation clusters have not yet been upgraded

to take advantage of this improved technology.

O
c-

O

E
i.i

100,

90

80

70

60

50

ELC

o $PARC 10

I I i I

10 20 30

Number of processors

Figure 5: Measured efficiencies for the fixed-sized test problem.

=

v

]1
"o
c-

o

105

i0z

1oI

APPL: SUN SPARC elc / Ethernet
104 103

Processors
e

o

+ f _1= ,wb_

ol

100 I i l l J I0°
I00 102 104

Missage Slz= (Bylws)

(a) Total Bandwidth

v

la
u

o
a.

102

101

APPL: SUN SPARC elc / Ethlrnit

Procel=orl

÷ 8 .-.4.-_ _

0 0 t 0 2 10 4

Megsage Size (BHus)

(b) Bandwidth per Processor

Figure 6: Ethernet bandwidth as a function of both message size and cluster size.

2O

As an aside,it shouldbe notedthat everyeffort wasmadeto find the best set of

compileoptionsfor agivenmachinesoasnot to artificially improvetheperformancefigures
by needlesslyincreasingthe computationtime relativeto the communicationtime. For
example,on a SUNSPARCl0our selectionof compileswitchesgivesa CPUsavingof 26%
comparedto a naiveoptimizationusingjust the "-03" compilationswitch.

Giventheavailablebandwidth,thepoorperformanceof theworkstationclustersmerely

suggeststhat the ratio of computationto communicationwastoo smallfor thefixed-sized
problem.But this ratio wassetartificially smalljust sothe problemwouldfit ona single
nodeof thehypercube.A morerealisticratio canbeobtainedby runninga scaledproblem
wereeachnodeprocessesat mostone stripe; the morenodes,the morestripes that are
usedfor the test. Wehavecarriedout a performancestudy for our algorithmon sucha

scaledproblemusinga stripewhich consistedof onecoarsemeshof 100by 8 cellsthat
containedtwo levelsof refinement,eachwith a refinementratio of 4. Figure7 showsthe

resultsof this study. Herethe efficiencyis definedastheratio of the serialwall clocktime
to the parallelwall clocktime. Onceagain,the algorithmperformsextremelywellon the

hypercube.Note that the efficiencyis still above97%for 32nodes.This time, however,
the drop-offin efficiencyfor the workstationclustershasreachedacceptablelevels. For
example,either 16ELCsor 8 SPARC10Smaybe usedat over80%efficiency.Again we
wouldlike to emphasizethat this scaledproblemis morerepresentativeof howweusethe

AMR algorithmthan is the fixed-sizedproblem. Therefore,aswill be shownin the next
section,the aboveefficienciesarereadilyobtainableon realproblems.

I00:

o>" 96_92

"G F _ \ _ iPSC/860

_ 88F__, _ • ELC _

80 I I ,a I I t I i
10 20 30

Number of processors

Figure 7: Measured efficiencies for the scaled test problem.

In summary, the above results show that the AMR algorithm scales extremely well on

a dedicated parallel machine that offers a scalable data network. But more importantly,

perhaps, the algorithm can deliver a good performance on workstation clusters, even when

communications are via ethernet. With the tenfold increase in bandwidth observed with

21

fibreoptic connections, it would not be unreasonable to expect to be able to use more than

20 machines at well over 80% efficiency, provided that the problem was reasonably well load-

balanced. Given that there is a trend towards vendors offering multi-processor workstations,

the effective number of nodes that could be used efficiently would reach three figures. Fur-

ther advances in network technology will increase this figure still further. Certainly, for the

sorts of application for which the AMR algorithm is intended, there is little danger in the

foreseeable future of it performing poorly simply because of a surfeit of processing nodes.

Before moving on to the next section it is worth mentioning one practical advantage of

our strategy of attacking the coarse grain parallelism within the AMR algorithm. Given

the complexity of the algorithm, one can never be sure that a specific implementation is

entirely free of bugs. However, through several years of use, it is clear that our serial

implementation has reached a stage whereby it might be considered safe to assume that

any remaining bugs are benign. Since our parallel implementation performs the same set

of operations on the same set of data as the serial version, there is no reason why it should

not give the same results, even down to round-off errors. After some vigorous debugging we

can claim that this is indeed the case. If we had tackled a finer grain parallelism from the

outset, we probably would not have been able to utilize such a stringent quality control test

as checking for zero differences in round-off. Admittedly, one expects a good algorithm to

be insensitive to round-off errors, and therefore we might well have been content to settle

for having just very small discrepancies between the results produced by two nominally

equivalent implementations of our algorithm. But, based upon previous experiences, there

would always remain a nagging doubt that some subtle bug had been left uncovered. We

are now well placed to extend our work by tackling the fine grain parallelism within a

mesh patch. Given the relative simplicity, logically speaking, of the tasks performed within

a patch, there would be no merit in trying to maintain the same stringent control over

round-off errors for this future work.

4.2 A "Real World" Application

Although classically modelled as a quasi one-dimensional structure consisting of an inert

shock front followed by a reaction zone, a detonation wave, in marked contrast to an ordinary

shock wave, can be highly two-dimensional in nature[7]; a detonation front rarely remains

planar. Over the years, experiments have revealed that a detonation front often supports

a complex system of transverse waves which trace out a "fish-scale" pattern, thus giving

rise to a characteristic length (the height of one scale) known as the detonation cell size.

Recently, modern numerical schemes have been utilized in an attempt to improve our general

understanding of this phenomenal5, 14]. Although such numerical simulations have been

reasonably successful, it is clear that they have a number of shortcomings. For example,

22

whereasmostcalculationshavebeenfor fronts whicharejust oneor two cellsin length,a

realisticallysizedproblemwouldnecessitateusinga front that containedtensof cells.This
shortcomingis an indicationof theexpenseof suchsimulations.Today,however,usingour
parallelAMR algorithnl runningon a relativelysmallnumberof workstations,weareable
to performroutinecalculationsthat involvetenor moredetonationcells.

Figure8 showsresultsfromonesuchsimulation,a detonationwavereflectingfrom a 20°
ramp. The left-handplate showsa singleSchlieren-typesnapshotwhichclearlyshowsthe
expectedMachreflectionflowpattern, while the right-handplateshowsthe characteristic
"fish-scale"pattern tracedout bythetransversewaves.This lastplateisessentiallya smear
imageof thevorticity fieldasthedetonationfrontinteractswith theramp,andit is therefore
comparableto the soot tracerecordsthat areproducedexperimentally[7];the detailsfor
howweproducenumericalsoottracesaregivenelsewhere[15].Notethat the lightera point
within the image,thehigherthe peakvorticity that haspassedthat point in space,and so
the edgesof the "fish-scales"correspondto the trackstracedout by the numeroustriple
points along the lengthof the detonationfront. Also note that the detonationcell size
behindthe Machstemis considerablysmallerthan that behindthe incidentfront. Again
this is in accordancewith experimentalobservation.Sincethe Math stemmovesnormal

to the rampsurface,it mustbe travellingfasterthan the incidentfront; thus the ratio of
its speedto the Chapman-Jouguetvelocity(theminimumsustainabledetonationspeed)is
alsohigherthan that of the incidentfront. Generallyspeaking,the higher this ratio, the
morestablea detonationfront becomesandsoits cell sizedecreases.

Giventheperformanceresultsthat werepresentedin theprevioussection,it wouldserve
no purposehereto presentfurther detailedfiguresfor the ramp simulation. Sufficeit to
say,suchsimulationshavebeenrun for up to 40consecutivehourson eightSuNSPAR('10
workstations,duringwhichsustainedefficienciesof over80%wereachieved,despitethefact
that all communicationswereviaethernetratherthan fibreopticlinks. While wedonotea

fewspecificdetailsasto howthe rampcalculationwasperformed,it shouldbe recognized
that this calculationformspart of a carefulinvestigationinto the Machreflectionprocess

of detonationwaves,andthereforea full accountwill appearin the literature in duecourse.

Therampcalculationemployeda four leveladaptivegrid. Thecoarsestgrid contained
400by 18cells,and a further threelevels,eachwith a refinementratio of 4, wereusedto
resolvethe detailsof the flow. Thusthefinestgrid level isequivalentto a uniformmeshof

25600by 1152cells.Theso-calledreactiveEulerequationswereusedto modeltheflow[14].
In essence,a singlereactantA is converted to a single product B by a one-step irreversible

chemical reaction which is governed by Arrhenius kinetics. Four parameters dictate the

basic behaviour of the detonation wave. These are: a non-dimensional activation energy, E,

a non-dimensional heat release, Q, the ratio of specific heats, 7, and the degree of overdrive,

f, for the detonation wave. For the case presented here, these parameters took the values

23

Figure8: Schlieren-typeimageand numericalsoot tracefor a detonationwavereflecting
from a20° ramp. Key: I.S., IncidentShock; R.S., Reflected Shock; M.S., Mach Stein; T.P.,

Triple Point.

24

Forcaption,seepageopposite.

25

10,50,1.2and 1.2, respectively. The computation was started using the exact, steady ZND

wave solution[7]. The resolution of the computational mesh may be gauged by the fact

that the finest grid level provides 15 mesh cells per reaction half-length, L_, the distance

measured from the detonation front by which half the reactants are consumed in the steady

ZND solution. To seed the transverse wave structure, a sinusoidal perturbation was added

to the pre-exponential factor in the Arrhenius rate term for the first few time steps. The

wavelength of the perturbation was chosen to be close to the transverse spacing predicted

by linear theory[5]; thus to get 10 detonation cells along the length of the incident front

the channel width was taken to be 76.8 reaction half-lengths. The operator split version of

Roe's scheme which has been described by Clarke et al.[6] was used to integrate the flow,

albeit with the inclusion of some additional dissipation so to avoid the failings reported by

Quirk[14]. The bulk of the simulation was spent propagating the incident wave to the foot

of the ramp, a distance of some 15 channel widths, so as to be sure that the detonation

front was well settled before it interacted with the ramp.

We close this section with a reminder that the AMR algorithm is not tied to any one

application. Admittedly the theme throughout this paper has been one of detonation flows,

but, there is no reason why our AMR machinery cannot be brought to bear on an entirely

different application.

5 Conclusions

A method has been presented which describes how Quirk's adaptive mesh refinement algo-

rithm (AMIt) may be parallelized. This algorithm is sufficiently general that the method of

parallelization can be taken as a template for a whole class of block-structured, mesh refine-

ment schemes. The method of parallelization exploits the natural coarse grain parallelism

found in the AMR algorithm so as to leave the original serial algorithm virtually intact.

Moreover, since it makes no demands on the target parallel hardware other than assuming

some simple message passing capability, portability across a range of platforms is ensured.

To date we have demonstrated that the parallel algorithm runs on both workstation clusters

and on an Intel hypercube system.

The robustness of the parallel AMR algorithm is such that it is now run routinely

on workstation clusters for large scale simulations of detonation phenomena. A typical

calculation might utilize 8 SUN SPAItC10s for up to forty hours. Efficiencies of over 80% are

reached for these computations even when inter-workstation communication is via ethernet

rather than fibre optic links. Such high efficiencies stem from the block-structured nature

of the AMR algorithm; by dealing with blocks of cells rather than individual cells one

markedly improves the ratio of computation to communication, thus alleviating some of the

performance problems associated with using low speed networks.

26

Thusfar wehavecircumventedthe thorny issueof loadbalancing.For our detonation

simulations,althoughthe computationalgrid is adaptingto the flow solution, it doesso
in a fashionwhich allowsthe load balancingto be fixed as a one-offat the start of the
calculation. At this juncture, considering the large number of adaptions that take place in

a typical simulation, we are not hopeful that a general purpose load balancing procedure

will be found that is cheap enough to be used during the course of a calculation. Instead,

we envisage employing heuristic procedures much as is done with mesh refinement monitor

functions. Experience shows that such refinement functions work well in practice, so there

is no reason to believe that heuristic load balancing functions won't also work well. Further

work is planned to see whether or not this optimism is misplaced.

Lastly, it is worth noting that workstation clusters provide a relatively robust and cheap

environment in which to develop parallel algorithms. While large purpose-built parallel

machines may offer unrivaled computational power, they do not always come complete with

stable operating systems! We were able to design and test the parallel AMR algorithm

on a reliable system of workstations. Then, safe in the knowledge that the algorithm was

working satisfactorily, it took less than one mornings work to port the code to the Intel

hypercube. It would doubtless have been a more traumatic exercise to develop the parallel

AMR algorithm directly on the hypercube.

Acknowledgements

We would like to thank the Internal Fluid Mechanics Division of NASA Lewis Research

Center for providing us with their APPL message passing library.

References

[1] M. J. BEItGER, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equa-

tions. Ph.D. thesis, Computer Science Dept., Stanford University (1982).

[2]

[3]

M..]. BERGER AND P. COLELLA, Local Adaptive Mesh Refinement for Shock Hydro-

dynamics. J. Comput. Phys., 82(1989), pp. 67-84.

M. J. BERGER AND J. S. SALTZMAN, Structured Adaptive Mesh Refinement on the

Connection Machine. Proceedings of the sixth SIAM conference on "Parallel Processing

for Scientific Computing," Edited by R. F. Sicovec, D. E. Keyes, M. R. Leuze, L. R.

Petzold and D. A. Reed. Vol II, pp. 903-906, 1993.

[4] A. BEQUELIN, J. DONGARRA, A. GEIST, R. MANCHEK AND V. SUNDERAM, A

User's Guide to PVM Parallel Virtual Machine. Oak Ridge National Laboratory re-

port, ORNL/TM-11826, July 1991.

27

[5] A. BOURLIOUXANDA. J. MAJDA,Theoretical and Numerical Structure for Unstable

Two-Dimensional Detonations. Combustion and Flame, 90(1992), pp. 211-229.

[6] d. F. CLARKE, S. KARNI, J. d. QUIRK, P. L. ROE, L. G. SIMMONDS AND E. F.

TORO, Numerical Computation of Two-Dimensional Unsteady Detonation Waves in

High Energy Solids. J. Comput. Phys., 106(1993), pp. 215-233.

[7] W. FICKETT AND W. DAVIS, Detonation. University of California Press, Berkeley,

1979.

[8]

[9]

[10]

[11]

J. FISCHER, Selbstadaptive, lokale Netzverfeinerungen fiir die numerische Simulation

kompressibler, reibungsbehafteter StrSmungen. Ph.D. thesis, Institut ffir Aerodynamik

und Gasdynamik, Universit£t Stuttgart (1993).

INTEL CORPORATION, iPSC/2 and iPSC/860 Programmers Reference Manual. April

1991.

V.KUMAR AND A.GUPTA, Analyzing the Scalability of Parallel Algorithms and Archi-

tectures: A Survey. University of Minnesota, Computer Science Dept. Tech. Report TR

91-18, 1991. To appear in, Journal of Parallel and Distributed Computing.

K. G. POWELL, P. L. ROE AND J. J. QUIRK, Adaptive-mesh Algorithms for Com-

putational Fluid Dynamics. pp. 303-337, "Algorithmic Trends in Computational Fluid

Dynamics," Edited by M. Y. Hussaini, A. Kumar and M. D. Salas. Springer-Verlag,

New York, 1993.

[12] A. QUEALY, G. L. COLE AND R. A. BLECa, Portable Programming on Paral-

lel/Networked Computers using the Application Portable Parallel Library (APPL).

NASA TM-106238, July 1993.

[13] J. J. QUIRK, An Adaptive Grid Algorithm for Computational Shock Hydrodynamics.

Ph.D. thesis, College of Aeronautics, Cranfield Institute of technology (1991).

[14] J. J. QUIRK, Godunov-Type Schemes Applied to Detonation Flows. To appear in the

proceedings of the 2nd ICASE/NASA LaRC Combustion Workshop, Hampton VA,

1992. Kluwer publishing.

[15] J. J. QUIRK, Numerical Soot Traces: "The Writing's on The Wall". To appear in

the proceedings of the Transition, Turbulence and Combustion workshop held by

ICASE/NASA LaRC, Hampton VA, summer 1993 .

[16] THINKING MACHINES CORPORATION, "The Connection Machine CM-5 Technical

Summary," October 1991.

28

Form Approved

REPORT DOCUMENTATION PAGE OMB,_oo_o,,o,ae

Public reporting bQrdefl for this collection of InformatiOn ts estimated tO average ? hour r)er response, including the time for revtewmg instrt, K%'ions, searching existing data sources.
(Ja[_t_J IIIr_ mal_ttalnlng the data needed, and completing and revtewlng the collection of mformatlOn Send comments re_Jarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this iDuroen, to Weshlngton Headquarters _rwces. Directorate for Information ODerattOns and Re_ortL 1215 Jefferson

Davis Highway. Bu=te 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Pro ¢%t (0704-0188). WaBhif_gton. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE ,1. REPORT TYPE AND DATES COVERED

August 1993 Contractor Reuort

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A PARALLEL ADAPTIVE MESH REFINEMENT ALGORITHM C NA51-19480

6. AUTHORS)

James J. Quirk

Ulf R. Hanebutte

7. PE_ORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor:

Final Report

Michael F. Card

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 93-63

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-191530

ICASE Report No. 93-63

Submitted to Journal of Computa-

tional Physics

12a. DiSTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 02, 64

12b, DISTRIBUTION CODE

!13. ABSTRACT (Maximum 200 words)over recent years, Adaptive Mesh Refinement (AMP,) algorithms

which dynamically match the local resolution of the computational grid to the numeri-=

cal solution being sought have emerged as powerful tools for solving problems that

contain disparate length and time scales. In particular, several workers have demon-

strated the effectiveness of employing an adaptive, block-structured hierarchical

grid system for simulations of complex shock wave phenomena. Unfortunately, from the

parallel algorithm developer's viewpoint, this class of scheme is quite involved;

these schemes cannot be distilled down to a small kernel upon which varlous parallel-

izing strategies may be tested. However, because of their block-structured nature

such schemes are inherently parallel, so all is not lost. In this paper we describe

the method by which Qulrk's AMR algorithm has been parallellzed. This method is

built upon Just a few simple message passing routines and so it may be implemented

across a broad class of MIMD machines. Moreover, the method of parallellzatlon is

such that the original serial code is left virtually intact, and so we are left with

Just a single product to support. The importance of this fact should not be under-

estimated given the size and complexity of the original algorithm.

14. SU_ECTTERMS

adaptive mesh refinement, distributed computing,

message passing paradigm

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

30

16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prt,_crJb¢_ by ANC.1%ld Zig-18
296-102

_U.S. GOVERNMENT PRINTING OffICE: 1193 -"/_JI-N4/ll(_i"/

